How to Convert kWh to Amps

Many homeowners are looking for ways to be more self-sufficient and off-grid. The best way to do so is by choosing portable power stations. kWh and amps are two essential terms to understand power.

kWh to Amps

kWh stands for kilowatt-hour, and it is a unit of energy. On the other hand, amps measure the amount of current flowing through an electrical circuit. You can convert kWh to amps using the formula: amps equal to wattage divided by volts.

Jackery offers a line of portable power stations with high capacity and multiple ports. The Explorer 2000 Pro, for example, has a capacity of 2,160 watt-hours and features various ports, including AC outlets, USB ports, DC outputs, and a 12V carport.

Jackery Explorer 2000 Pro Portable Power Station

Jackery Explorer 2000 Pro Portable Power Station

- Quick AC charging in 2 hours

- Large battery capacity of 2160Wh

- Multiple output ports to charge appliances

- Built with industry-leading BMS technology

- Powers nearly 96% of your appliances

What is kWh to Amps

Watt-hour, abbreviated Wh, equals one watt of power or output expended in one hour.

Kilowatt-hour, abbreviated kWh, is a term that measures electrical energy. One kilowatt-hour of energy equals one kilowatt of power consumed in one hour.

Amps or amperes is a standard electric current unit. It is the rate of speed at which electrons flow through a conductor.

Amp-hours, abbreviated Ah, is a term that measures electrical charge or battery capacity. One amp-hour charge equals one amp of current transferred in one hour.

Milliamp-hour, abbreviated mAh, is a commonly used electric charge unit that describes small battery capacities. It is the amount of power a battery or power station can hold.

Relation Between kWh and Amps

If you want to convert kWh to Amps, you can use the below formula:

Amps = (kWh × 1000) ÷ (V × H)

Where

kWh = Kilowatt-hour used

V = Voltage of the system

H = Number of hours

Let's say you have an electric device running on a standard 120V circuit for 5 hours. The kilowatt-hour, in this case, is nearly 6kWh.

Amps = (6kWh × 1000) ÷ (120V × 5H) = 10A

Line-to-Line Voltage: Also called line voltage, it is the voltage between any two given phases.

Line-to-Neutral Voltage: Also called phase voltage, it is the voltage between any given phase and neutral.

How to Convert Amps to kWh

The formula to convert amps to kWh is given below:

kWh = Amps × Volts × Hours of Use / 1000

Let's say you are running a 20 amps electric device on a standard 120V circuit for 4 hours.

Kilowatt-hour = 20A × 120V × 4H / 1000 = 9.6 kWh.

Amps to kWh calculation is helpful when sizing the power station or battery. Since energy usage is generally listed in Wh or kWh, calculating the battery's kilowatt hours will help determine how long the battery can power any device or appliance.

Amps to kWh Conversion Table

Current (Amps)

12V Voltage

24V Voltage

120V Voltage

220V Voltage

1 Amp

0.012 kWh

0.024 kWh

0.12 kWh

0.22 kWh

2 Amps

0.024 kWh

0.048 kWh

0.24 kWh

0.44 kWh

3 Amps

0.036 kWh

0.072 kWh

0.36 kWh

0.66 kWh

4 Amps

0.048 kWh

0.096 kWh

0.48 kWh

0.88 kWh

5 Amps

0.060 kWh

0.120 kWh

0.60 kWh

1.10 kWh

How to Convert kWh to Ah

Converting kWh (electrical energy) to Ah (electrical charge) can be done using the below formula.

Ah = (kWh × 1000) ÷ V

That is, the electrical charge in amp-hours equals the energy in kilowatt-hours times 1000, divided by voltage.

Example: Let's convert 6kWh at 120V to Ah.

Ah = (6kWh × 1000) ÷ 120V = 50Ah.

Although both amps and amp-hours measure electrical charge, they are different. Ampere is the rate at which electrons pass through an electrical conductor. In contrast, amp-hours is the charge that moves through the source in one hour.

kWh to Ah conversion is of utmost importance when estimating the battery capacity. Electrical energy is usually measured in kWh, whereas battery capacity is rated in Ah. If you want to determine which battery capacity will meet your electricity needs, you'll need to convert kWh to Ah.

kWh to Ah Conversion Table

Kilowatt Hours

Amp Hours @ 12V

Amp Hours @ 24V

1 kWh

83.33 Ah

41.67 Ah

2 kWh

166.67 Ah

83.33 Ah

3 kWh

250 Ah

125 Ah

4 kWh

333.33 Ah

166.67 Ah

5 kWh

416.67 Ah

208.33 Ah

How to Convert Ah to kWh

If you want to convert Ah to kWh, you'll need to multiply amp hours times volts divided by 1000.

kWh = (Ah × V) ÷ 1000

Suppose you want to calculate the kilowatt-hour of the battery. The first step is to locate its amp-hour and voltage, which are often printed on the battery. In this example, we suppose the battery has 100 amp hours and a voltage of 12V.

Kilowatt-hour = (100Ah × 12V) ÷ 1000 = 1.2kWh

Ah to kWh conversion is vital in comparing batteries of different voltages. For example, when we compare a 12V 100Ah battery and a 24V 60Ah, it's better to calculate kWh in each case.

For a 12V 100Ah battery, the kWh will be 1.2kWh. In contrast, for the 24V 60Ah battery, the kWh will be 1.44kWh. That means a 24V 60Ah battery stores more energy compared to 12V 100Ah.

Ah to kWh Conversion Table

Amp Hours

Kilowatt Hours @ 12V

Kilowatt Hours @ 24V

100 Ah

1.2 kWh

2.4 kWh

200 Ah

2.4 kWh

4.8 kWh

300 Ah

3.6 kWh

7.2 kWh

400 Ah

4.8 kWh

9.6 kWh

500 Ah

6 kWh

12 kWh

kWh to Amps (2)

How to Convert kW to Amps

Kilowatts is the measure of power, whereas ampere is used to describe current. Since they measure two different units, kW cannot be directly converted to amps. You must know the voltage of the system to execute the conversion.

For any DC circuit, you can convert kW to amps using the below formula.

Amps = 1000 × kW / V

For any single-phase AC circuit, you'll need to keep the power factor in mind.

Amps = 1000 × kW / V × PF

Let's find the current of a 10kW motor with a power factor of 0.8 at 240V.

Amps = 1000 × 10kW / 240V × 0.8 = 52A

Here, the voltage is the RMS value of the applied AC voltage, and PF is the power factor of the load.

Motor Current Ratings (Single-Phase AC)

Power

Current at 120V

Current at 240V

1 kW

10.417 A

5.208 A

2 kW

20.833 A

10.417 A

3 kW

31.25 A

15.625 A

4 kW

41.667 A

20.833 A

5 kW

52.083 A

26.042 A

For any three-phase AC circuit, you can convert kW to amps if the line-to-line and line-to-neutral voltage are known.

Line-to-Line Voltage:

A = 1000 × kW ÷ (√3 × PF × V)

Line-to-Neutral Voltage:

A = 1000 × kW ÷ (3 × PF × V)

Let's calculate the current of a 30kW three-phase motor with a power factor of 1 and a line-to-line voltage of 240V.

A = 30kW × 1000 ÷ (√3 × 1PF × 240V) = 72 amps

If you want to calculate the amps of 3kW with a line-to-neutral voltage of  60V and 0.8 PF, here's how you can do it.

A = 3kW × 1000 ÷ (3 × 0.8PF × 60V) = 20.8 amps

Motor Current Ratings (Three-Phase AC at Line-to-Line Voltage)

Power

Current at 120V

Current at 208V

Current at 240V

Current at 277V

Current at 480V

1 kW

6.014 A

3.47 A

3.007 A

2.605 A

1.504 A

2 kW

12.028 A

6.939 A

6.014 A

5.211 A

3.007 A

3 kW

18.042 A

10.409 A

9.021 A

7.816 A

4.511 A

4 kW

24.056 A

13.879 A

12.028 A

10.421 A

6.014 A

5 kW

30.07 A

17.348 A

15.035 A

13.027 A

7.518 A

The main reason to convert kilowatts to amps is by adequately sizing and selecting electrical components.

How to Convert Amps to kW

The simple way to convert amps to kW is by using Watt's Law power formula, which states that I (Amps) = P (Watts) ÷ V (Volts).

The amps to kilowatts conversion formula in the DC circuit is:

Kilowatts = (Amps × Voltage) ÷ 1000

That means the power in kilowatts equals current in amps multiplied by voltage in volts divided by 1000.

Let's say you want to find kilowatts of a circuit with 24 amps of current at 120V.

P (in Kilowatts) = (24A × 120V) ÷ 1000 = 2.88kW

Current in Amps (A)

Voltage in Volts (V)

Kilowatts (kW)

10 Amps

200 Volts

2 kW

20 Amps

210 Volts

4.2 kW

30 Amps

220 Volts

6.6 kW

70 Amps

230 Volts

16.1 kW

100 Amps

240 Volts

24 kW

For any single-phase AC circuit, you'll need to consider the RMS voltage, current, and power factor.

P (kW) = (Amps × Volts × PF) ÷ 1000

The power factor in the single-phase AC circuit is determined by the AC frequency and the amount of inductive or capacitive circuit elements.

Current in Amps (A)

Voltage in Volts (V)

Power Factor

Kilowatts (KW)

40 Amps

222 Volts

0.11

0.976 KW

43 Amps

232 Volts

0.12

1.197 KW

46 Amps

242 Volts

0.13

1.447 KW

49 Amps

252 Volts

0.14

1.728 KW

52 Amps

262 Volts

0.15

2.043 KW

For any three-phase AC circuit, there are two formulas to convert amps to kW.

Line-to-Line Voltage:

P (in kW) = [Amps × Voltage (Line-to-Line) × PF × √3] ÷ 1000

This equation is correct when considering one pair of wires in the three-phase system.

Line-to-Neutral Voltage:

P (in kW) = [Amps × Voltage (Line-to-Neutral) × PF × 3] ÷ 1000

Jackery Power Stations Explained

When looking for a portable power station, you'll need to look for its battery capacity. As a general rule of thumb, the bigger the battery capacity, the longer you can run your appliances. The standard metrics used to measure battery capacity include mAh, Ah, Wh, and kWh.

Jackery is a leading manufacturer of robust and portable solar panels, power stations, and solar generators. The battery-powered solar systems are designed to supply stable electricity to most of your home or outdoor appliances.

Jackery Explorer 1000 Pro Power Station

Jackery Explorer 1000 Pro provides on-the-go power to 93% of your home or outdoor appliances. The ergonomic design with compact size makes it suitable for outdoor activities like hiking, backpacking, etc. It has a battery capacity of 1002Wh to power small and large appliances for long hours.

jackery explorer 1000 pro power station

Jackery Explorer 2000 Pro Power Station

Jackery Explorer 2000 Pro features a lithium-ion battery of 2160Wh and an output power of 2200W. The power station can charge 96% of your appliances during power outages and camping. It has outstanding features, like the ability to recharge fully in 2 hours via AC input.

jackery explorer 2000 pro power station

Series

Appliances

Jackery Explorer 1000 Pro Portable Power Station

Blender (300W): 2.5H

Space Heater (350W): 2.5H

Microwave (700W): 1.2 H

Kettle (850W): 1 H

Jackery Explorer 2000 Pro Portable Power Station

Toaster (650W): 2.8H

Microwave (700W): 2.6H

Kettle (850W): 2.1H

Ice Shaver (700W): 2.6H

Portable Air Conditioner (1150W): 1.6H

kWh to Amps FAQs

How do you convert kWh per year to amps?

To convert kWh per year into amps, you can use the formula:

Amps = (kWh per year × 1000) ÷ (V × H)

For instance, if you are using an electrical appliance consuming 1000 kWh per year at 120V, then the current draw can be calculated as follows:

Amps = (kWh × 1000) ÷ (V × H) = (1000kWh × 1000) ÷ (120V × 365H) = 22.8A.

Here we assume that the electrical appliance is used for one hour daily.

How many amps hours is 3.6 kWh?

If you have 3.6kWh at 12V, you can convert kWh to Ah using the below formula.

Ah = kWh × 1000 ÷ V = 3.6kWh × 1000 ÷ 12V = 300Ah.

What are the relations of amps, watts, and volts?

Amps means the number of electrons flowing through a certain point at any time. Watts is the power or energy an electric appliance consumes. Volts measure the pressure required for an electric current to flow past a wire.

In mathematical terms, watts equals the multiplication of amps and volts.

Relationship between watts, amps, and volts :W = A × V

For instance, if the electric device consumes 10 amps at 12V, the wattage of the appliance will be 10A × 12V = 120W.

Final Thoughts

Kilowatt-hour and amp-hour are critical units for solar systems or electric appliances. You can calculate the compatible solar generator by understanding how much kWh or Wh battery capacity a power station has.

Converting kWh to amps will help you select which power station can supply seamless electricity to your appliances for a long time. Jackery Explorer Portable Power Stations are designed with high Wh and Ah ratings to provide electricity to small and large appliances for a long time.


Get My Gift